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SIMILARITY AND SELF-PRESERVATION IN ISOTROPIC
TURBULENCE

By R. W. STEWART, St John’s College, Cambridge
AND A. A. TOWNSEND, Emmanuel College, Cambridge

(Communicated by Sir Geoffrey Taylor, F.R.S.—Recewed 13 October 1950)

A A

Measurements of the double and triple velocity correlation functions and of the energy spectrum
function have been made in the uniform mean flow behind turbulence-producing grids of several
shapes at mesh Reynolds numbers between 2000 and 100000. These results have been used to
assess the validity of the various theories which postulate greater or less degrees of similarity or
self-preservation between decaying fields of isotropic turbulence. It is shown that the conditions
for the existence of the local similarity considered by Kolmogoroff and others are only fulfilled for
extremely small eddies at ordinary Reynolds numbers, and that the inertial subrange in which the
spectrum function varies as k=¥ (£ is the wave-number) is non-existent under laboratory conditions.
Within the range of local similarity, the spectrum function is best represented by an empirical
function such as £—¢1°¢%, and it is concluded that all suggested forms for the inertial transfer term
in the spectrum equation are in error. Similarity of the large scale structure of flows of differing
Reynolds numbers at corresponding times of decay has been confirmed, and approximate measure-
ments of the Loitsianski invariant in the initial period have been made. Its value, expressed non-
dimensionally, decreases slowly with grid Reynolds number within the range of observation.

Turbulence-producing grids of widely different shapes are found to produce flows identical in
energy decay and in structure of the smaller eddies. The largest eddies depend markedly on the
grid shape and are, in general, significantly anisotropic.

Within the initial period of decay, the greater part of the energy spectrum function is self-preserv-
ing, and this part has a shape independent of the shape of the turbulence-producing grid. The part
that is not self-preserving contains at least one-third of the total energy, and it is concluded that
theories postulating quasi-equilibrium during decay must be considered with great caution.

OF

INTRODUCTION

In the theory of isotropic turbulence, it has been customary to assume partial or complete
similarity of the turbulent motion at all stages of the decay, that is, that the changes in the
structure of the turbulence with time can be fully described by changes in magnitude of two
parameters, usually a characteristic length and a characteristic velocity. This assumption
is based on the notion that the rapid interchange of energy between eddies of different sizes
soon leads to an equilibrium distribution of energy among the various eddy sizes, which is
independent of the detailed initial conditions of the turbulence and is determined by such
bulk parameters as the total energy and scale of the turbulent motion. This equilibrium may
be an absolute or a quasi-equilibrium, depending on whether the turbulent transfer of energy
into and out of eddies of a particular size does or does not greatly exceed the decay in intensity
of these eddies. Both types of equilibrium are important in the decay of isotropic turbulence.
Using these ideas, a number of workers have given accounts of the decay of isotropic tur-
bulence and of the development and shape of the double velocity correlation function, but
there has been some divergence in the type and range of the similarity assumed, and recently
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360 R. W. STEWART AND A. A. TOWNSEND ON SIMILARITY

experimental measurements of the correlation function have led to some doubt as to the strict
accuracy of the existing notions of the similarity in isotropic turbulence. A considerable
amount of information about the double and triple correlations and the energy spectrum
function has been collected in this laboratory, and in this paper an attempt will be made to
present the experimental evidence for the various theories of similarity and to decide how
far the theoretical accounts of turbulent decay agree with the observed changes in the
structure of the turbulence as measured in wind-tunnels.

Some of the experimental results presented below have been published already by one or
other of the authors, but the greater part of the measurements are new. Since the primary
object of this paper is to assess the experimental backing of current theories of similarity and
self-preservation, no attempt is made to indicate the original source of particular measure-
ments. ‘

NoraTION

v kinematic viscosity,

M centre to centre spacing of rods in a square-mesh grid,

d diameter of the cylinders composing the grid,

x distance from the grid to the point of observation,

U mean stream velocity in the working section of the wind-tunnel,

u instantaneous value of the turbulent velocity component in the ¢ direction,

2 — 42 in isotropic turbulence. Bars indicate spatial averages,

u u

Ri(g,8,,8) = Ztiu}, the mean value of the product of #; at the point P, and u; at the point P/,
where PP’ is a vector r with components £}, §,, §5. The subscript 1 refers to the
downstream direction. If thereis a preferred cross-stream direction (for example,
in the flow behind a parallel rod grid), the subscript 2 refers to the direction
parallel to the grid elements,

Tk, €9, E5) = u;u;uy, the triple velocity product under the same conditions,

uf(r) = R}(r, 0, 0) in isotropic turbulence,
 [{Oun2
e e
“1Na,
€ total energy dissipation per unit mass,
L =" an
0
A S f "iflr) dr,
0
k radian wave-number in the spectrum of turbulence,
E(k, ) energy density in the three-dimensional spectrum at wave-number £,
Pk, t) energy density in the one-dimensional spectrum at wave-number £,
T(k,¢) contribution of the inertial forces to —QE% ,
k
S(k, 0) - f T(k,¢) dF,
0

kg = (e/v3)t.
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AND SELF-PRESERVATION IN ISOTROPIC TURBULENCE 361

LocAL SIMILARITY

The theory of local isotropy or local similarity was originated by Kolmogoroff (19414, &;
also Batchelor 1947), and applies only to the smaller eddies which contain little energy, and
which are in an absolute equilibrium, i.e. any group of eddy sizes is receiving and losing
energy at rates which are large compared with the time rate of change of the energy of eddies
in the group. The existence of such a range of eddy sizes depends on observations that the
eddies responsible for the final viscous dissipation of turbulent energy contain a negligible
proportion of the total energy, if the Reynolds number is moderately high. Applying the
generally accepted view that turbulent transfer occurs by successive instabilities of the eddies,
any eddy being unstable with respect to formation of eddies an order of magnitude smaller
and so on, it seems likely that sufficiently far into the range of eddies in absolute equilibrium,
the energy transfer is due only to transfer of energy from eddies also in absolute equilibrium.
Under these conditions, neither the amount nor the distribution of the energy among the
large eddies can have any influence on the distribution of energy among the various small
eddy sizes, and the distribution can only depend on the rate of energy transport, on the size
of the eddies considered, and on the viscosity. The distribution function can be expressed
in as many ways as there are ways of specifying eddy size, but the most generally accepted
function is the three-dimensional spectrum function E(£), defined by

27,2_”‘{ sm kr (1),

where d7(r) is the element of volume about r (Batchelor 1949). While the notion that a single
eddy size is represented by a single component of the spectrum differs slightly from the
intuitive physical notion of an eddy, this representation seems to be a reasonable com-
promise between mathematical and experimental convenience and the physical concept
of a single eddy. Then, applying dimensional analysis to the absolute equilibrium range,

it foll
it follows that E(k) — efipix(e’—iv*k), (1)

where ¢’ is the energy transfer into the low £ limit of the absolute equilibrium range, and y is
a universal function, not dependent on the mode of production of the turbulence. Under the
special condition that viscosity is negligible, a condition only possible at very high Reynolds
numbers for not too large values of &,

E(k) = Ak, 2)

where 4 is an absolute constant. In this particular case, ¢ is clearly the total energy dissipa-
tion ¢, since all the energy dissipation is due to eddies whose wave-numbers are greater than
those of the eddies satisfying this relation. When no such range exists, it is questionable what
value of ¢’ should be used in equation (1).

To find the form of y, it is necessary to make some assumption about the nature of the
transfer of turbulent energy from one wave-number to another. If the ordinary Kdrmén-
Howarth (1938) correlation equation is transformed to the three-dimensional spectrum form,
it becomes

B | Tk ) = —2E(k,), (3)

48-2
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362 R. W. STEWART AND A. A. TOWNSEND ON SIMILARITY

where 7'(k, ¢) is a transform of the triple velocity correlation, and surmises about its form are
necessary before the equation can be solved. Since 7'(£, ¢) represents the net effect of energy

transfer on (ZE%J) , it is better to consider S(£, ¢), the rate of transfer of energy from all wave-

numbers less than £ to all wave-numbers greater than £. Then, neglecting 8——~E((?/;’ f) R
0S((3*];c D | ovkE(E, 1) — (1)

Three specific hypotheses have been made about S(%, ¢).
(a) Heisenberg (19484, b) regards the action of the small eddies as equivalent to an eddy

viscosity, and puts X
S(k,0) = 24 (k) f K2E(K, 1) dk,
0

where n(k) = wa J (E—F(i ) )dk'
and derives the spectrum ; (k 4t

E(k) = (91() k [1 + /cl) ] ’ ()
where £, = (3;(36) For large &, (k> £,), this becomes

2_ 7,
E(k) = K2k

It is interesting to note that any assumption of an eddy viscosity due only to eddies of wave-
numbers greater than £ leads to a similar result. For example, a very general form for 7 (k)

may be used, w ¢ i\ 1/2¢ JR'je
- s[5 4]

where ¢ takes only positive values if the integrals are to converge, and the Ks are pure
numbers. When £ is so large that

[kEa <[ keEa
0
equation (4) becomes ¢y (k)
v 0k

Substituting the general form for 5(k) in this equation, an integral equation for E(k) is
obtained, whose solution is easily verified to be

+20k2E — 0. (6)

B = (3 SEK) (oak T,

i.e. the modified expression for #(k) still leads to a power-law spectrum with the same
exponent. )
(b) Obukhov (1941), by analogy with the expression for turbulent energy production in

shear flow, puts k } po
Sk, ) :ocl: f K2E(K) a’k’:, f E(K) dk,
0 k

but this leads to a solution increasing with £ for large values of £, which is physically im-
possible.
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AND SELF-PRESERVATION IN ISOTROPIC TURBULENCE 363
(¢) Kovasznay (1948) has assumed that S(%, ¢) depends only on E(£,¢) and £:
S(k,t) = PLE(K)] K.
k2
E(F) = ﬂ‘*e*k‘?[l —(1?) :l ,
2

i

The solution is

where , = 248 —i(,',e“s)

This spectrum has a high-frequency cut-off.

In general, any attack by supposing that S(, £) may be written as the product of two terms,
one involving integrals over all eddies with wave-number less than £, and the other all
eddies with wave-number greater than £, leads to a power-law spectrum at very large £,
irrespective of the exact form of the factors. This arises from the essential constancy of the
term representing the effect of the larger eddies when £ is sufficiently large. The objection to
a power-law spectrum is that sufficiently high-order moments of the spectrum become
infinite, with consequent infinities in the corresponding derivatives of the correlation
function, and this is contrary to the intuitive physical notion that the phenomena are com-
pletely smooth, and that the associated functions are analytic.

SELF-PRESERVATION OF THE ENERGY-CONTAINING EDDIES

The local similarity described by Kolmogoroff is a similarity equally valid for all types
of fully-developed turbulence, but, by its nature, it cannot apply to the energy-containing
eddies whose structure depends on more parameters than the energy transport and the
kinematic viscosity. It is usual to assume that the structure of these eddies remains similar
during decay, but that the structure, expressed in terms of a scale length and a scale velocity,
is not necessarily the same for other decaying turbulent fields. To avoid confusion, this
class of hypotheses will be called self-preservation hypotheses, and the term similarity used
to describe that class of hypotheses in which a scale length and a scale velocity alone are
sufficient to determine the structure of any field of turbulence.

The most comprehensive self-preservation hypothesis is to assume that the whole of the
structure of the turbulence remains similar during decay, but Batchelor (1948) has shown
theoretically that complete self-preservation cannot occur except as an asymptotic condition
at very large decay times, when the spectrum function becomes

E(k,t) = Ck* e,

This asymptotic form has been verified experimentally for flow far behind a square-mesh
grid at fairly low Reynolds numbers (Batchelor & Townsend 1948), and represents a state
in which there is no transfer of energy between eddies of different sizes, and in which each
component of the spectrum decays independently. The motion has little resemblance to
ordinary turbulent flow, and the solution, while interesting in itself, has no direct bearing on
the problem of the structure of isotropic turbulence at finite Reynolds numbers.

While complete self-preservation is only possible under these special non-typical con-
ditions, limited self-preservation is theoretically possible over a wide range of conditions,
and current theories of energy decay postulate self-preservation over finite ranges of
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364 R. W. STEWART AND A. A. TOWNSEND ON SIMILARITY

wave-number, the exact range depending on the view taken of the nature of the physical
processesinvolved in turbulent transfer. Both for very small wave-numbers and for very large
wave-numbers, there is known to be similarity, for when £ is very small

E(k,) = Ckt,

where C is invariant during decay (Batchelor 1949), and when £ is very large it is almost
certain that local similarity is true. Existing theories assume self-preservation during decay
of the energy-containing part of the spectrum plus either very large wave-numbers or very
small wave-numbers. Explicitly, the hypotheses are

() that E(k,f) — E,J(k/k,) for k>k, where £, is such that f “Etk, 1) dk < f "Bk, 1) dk
0 0
and E,, k, are functions of time, and

(6) that E(k, ) — CKF (k/k,) for all £ <k,, where , is such that f "Bk, 1) dk < f "E(k, 1) dk.
kr 0

The first hypothesis (Heisenberg 1948 6) supposes that transfer of energy from one wave-
number to another leads to a quasi-equilibrium which at sufficiently high wave-numbers
becomes an absolute equilibrium of the type described in the theory of local similarity. The
form of the quasi-equilibrium spectrum will depend on the Reynolds number of the tur-
bulence, but it can be shown that the hypothesis leads to the ‘linear’ decay law

uoc 471
valid in the initial period of decay, by considering the spectrum equation. Integrating this

equation, PR ”
| Sk, 0 +5; f Bk, ) dk = —2» fo RE(k, 1) dk.

The requirements for self-preservation of S(£, f) and E(£, ¢) are that

Lk, t) = Eo(t) Y (k[K,),

S(k;2) = [£o(0)]* ko' (k[ks),
and, putting £’ = ak;

RES kp(a) 5 (Eok) [ () dv = — 2R, [Fata) as.

Since 7(x) and ¢(x) are invariant during decay, it follows

(i) that Eycc £k, and
(i) that & k2) o i,
i.e. k2o 7L,

Then the intensity of the turbulence is
= f “E(k,t) dk — E,k, f " (%) dx
0 (1]

o -1,

The second hypothesis (see Kdrman & Lin 1949) is based on the apparent similarity in
shape of all correlation curves at different Reynolds numbers and times of decay if the
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AND SELF-PRESERVATION IN ISOTROPIC TURBULENCE 365

initial parabolic region is neglected. Physical reasons for this type of similarity are not
obvious, for the rate of transfer of energy from eddies of wave-number less than £ to those of
wave-number greater than £ becomes negligible as £ approaches zero, even considered as
a fraction of the total energy in these wave-numbers, and, in fact, the invariant Ck* range is
a reflexion of this disappearance of the inertial transfer term. In the absence of inertial
transfer of energy between the range and the energy-containing range, it is difficult to see
how the invariant range can impose a scale-velocity relation on the main body of the spec-
trum. However, the hypothesis has been used by Kolmogoroff (194146) and Frenkiel (1948)

to deduce the decay law P oc [

This decay law is not valid in the initial period, but Kdrman & Lin (1949) have suggested
that it may be true in the intermediate period of decay (Batchelor & Townsend 1948 a).

EXPERIMENTAL ARRANGEMENTS

Most of the measurements were made in the small wind-tunnel in the Cavendish Labora-
tory, but a few measurements of double and triple correlations at high Reynolds numbers
were made in the low-turbulence wind-tunnel at the National Physical Laboratory,

e

{0

)
|

NINININL

square mesh grid parallel cylinder grid slats grid

Ficure 1. Turbulence-producing grids used in the experiments.

Teddington. The measurements in the Cavendish Laboratory were madein the turbulent flow
behind bi-plane grids of circular cylinders of mesh-diameter ratio 4% = 5-33, except for
a few measurements using grids of parallel cylinders, and a grid of parallel prisms of elon-
gated rectangular section (figure 1). The measurements in the National Physical Laboratory
were behind a bi-plane grid of cylinders $%in. diameter, spaced centre to centre 613in.,
i.e. a mesh-diameter ratio of 3% = 7-4.

A hot-wire anemometer was used for the detection of the turbulent veloc1ty fluctuations,
and the associated electrical measuring equipment is very similar to that already described
(Batchelor & Townsend 19484). The only additions are: :

(@) an improved form of the circuit for the measurement of triple correlations, which,
while preserving the economy in non-linear circuit elements, contrives to balance the
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366 R. W. STEWART AND A. A. TOWNSEND ON SIMILARITY

statistical fluctuations of the output so that more accurate readings are possible (Stewart
1951), and

(b) a zero-beat heterodyne frequency analyzer for measurement of spectra.

The experimental results fall into several groups:

(a) longitudinal double velocity correlation functions,

(b) longitudinal triple velocity correlation functions,

(¢) spectra of the longitudinal velocity fluctuations,

(d) decay measurements behind grids of various shapes.

dr? _10v
0~4r dx U
053-_,
£
L 02
~
01—
% |
0
-
61— O slats grid
x parallel cylinder grid
- U = 620 c¢m. sec.™?
4— x/
S |
L
2 I
- b
X~
/
P
_ ! ] ! | ! I | |
0 50 100 150 200

x (cm.)

Ficure 2. Decay of turbulence behind grids of differing shapes.
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THE INFLUENCE OF GRID GEOMETRY ON THE TURBULENCE

All theories of isotropic turbulence assume that the turbulence behind a uniform grid can
be fully described in terms of comparatively few parameters, and that the exact geometry
of the grid elements is unimportant. For square-mesh grids of circular cylinders, the decay
can be described using as parameters the mean stream velocity and the effective scale C,M

SOCIETY

y
A B

SOCIETY

1-0 % x|/ M =30
K @ parallel cylinder, R} (0, 7, 0)
o o parallel cylinder, R} (0, 0, 7)
J 06 _5- x square mesh, M =5-08 cm.,,
\E< R} (0, 7, 0) =R} (0, 0, 7)
- X
NN
K\’%
g 0 s SR
Té -0-2 [ » | ¢ I I
8
w .
° % 0 \ x/M=35
% __\ ® slats, R} (0,7, 0)
B >§< O slats, R} (0, 0, 7)
0-6 ‘i x square mesh, M =2-54 cm.,
X\ R} (0,7,0)=R} (0,0, 7)
A
0-2F ’\X\
0 Mw
b
| —025 03 i g 20 2%
j r[M (M of square mesh grid)
Ficure 3. Transverse correlation functions behind grids of differing shapes.
(C,is the drag-coefficient of the grid) and it has been assumed that the turbulence behind
any grid can be described in terms of two similar parameters. To determine the extent to
which this assumption is valid, measurements have been made of the turbulence behind two
grids, both considerably different from the usual bi-plane square grid. One was made of
parallel circular cylinders, of diameter 0-95cm. and uniformly spaced 2:54 cm. centre to
centre, while the other consisted of parallel rectangular prisms, of section 3-7 by 0-4cm.,
i spaced 1-9 cm. apart (figure 1), looking rather like an open Venetian blind. At various
o distances downstream, measurements were made of the intensities of the turbulent velocity
components, of A2, and of the transverse double velocity correlations in directions both
parallel with and perpendicular to the grid elements, i.e. R}(0,7,0)/u? and R}(0, 0,7) /u}.

Vol. 243. A, 49
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368 R. W. STEWART AND A. A. TOWNSEND ON SIMILARITY

Except very close to the grids, the turbulence was found to be isotropic in the sense that

and the energy decay law was the linear law, found to be valid in the initial period for
bi-plane grids by Batchelor & Townsend (19484), i.e.

utoc (t—1t))~Y, A= 10v(t—1,)

as shown in figure 2. In figure 3@ and &, the correlation curves for the two grids are compared
with selected correlation curves measured behind a bi-plane grid. The turbulence behind the
parallel cylinder grid of 2-54cm. periodic spacing is found to resemble very closely the
turbulence behind a bi-plane grid of 5-08 cm. spacing, and correlation functions for these
grids are compared in figure 34, where M is the periodic spacing of the bi-plane grid, i.e.
5-08 cm. Similarly in figure 3 4, the slats grid is compared with a bi-plane grid of M = 2-54 cm.,
and again M is the periodic spacing of the bi-plane grid, in this case 2:54 cm. For reasonably
small values of 7, the correlation curves are independent of the nature of the grid, but at
larger values of 7, the departures from true isotropy become evident, and these departures
persist to the limit of the available decay times. Moreover, by transforming the correlations
to the three-dimensional spectrum function, it can be shown that the range of wave
numbers strongly affected by the grid geometry contains about one-fifth of the total energy.
Since the energy decay law and the spectrum at large wave-numbers are nearly independent
of grid shape, it must be concluded that neither are sensitive to the shape of the spectrum
at small wave numbers. Provided that these small wave-numbers are excluded, it is clear
that grid shape is irrelevant to the structure of the turbulence behind a grid, and that or-
dinary bi-plane square-mesh grids produce turbulence essentially similar to that found behind

these rather unusual grids.

ENERGY SPECTRUM OF ISOTROPIC TURBULENCE

Since it is not possible to measure directly the three-dimensional spectrum function £(£),
the measurements are of the longitudinal spectrum function ¢(£), which is related to £(k) by

0% 04
_ 200 09
Ek) =k 72 kﬁk
and represents the one-dimensional spectrum of a velocity fluctuation component taken
along a line parallel to the direction of the component. It is, except for a constant scale
factor, identical with the frequency spectrum of the fluctuations recorded by a hot-wire
(Taylor 1938). That is, if y(p)dp is the energy contained between radian frequencies p

and p+dp B(K) = UY(p),
where 7 Uk =p
and U is the mean velocity.
The spectrum analyzer used in these experiments could be adjusted to have band-widths
of either 20 or 120 hertz. The narrow band-width was used for measurements below 300 hertz.

For measurements at the high-frequency end of the spectrum, it is undesirable to put the
whole output of the amplifier into the analyzer as it would overload before appreciable
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AND SELF-PRESERVATION IN ISOTROPIC TURBULENCE 369

output were obtained, so, taking advantage of the availability of differentiating circuits,
the high-frequency spectrum was studied by measuring the spectrum, not of «, but of du/dt,
0%u/df?, and 0%/d#*. These spectra are related by

vt n) =095, ) = 079G ) = 070G )

where (¢, p) is the spectrum of the quantity ¢(¢). Unfortunately, it is difficult to determine
accurately the band-width of the analyzer, and for this reason, the absolute values of the
spectrum functions are rather uncertain, but the relative values are believed to be fairly
accurate. The electrical characteristics of the equipment are adequate over the range of use,
but the response of the hot-wire may be falling at high frequencies due to the finite length of
the wire. While it is difficult to be certain, this effect is believed to be less than the scatter of
the individual observations, partly because hot-wires of different lengths gave substantially
identical results, and partly because of the consistency of the results at different times of
decay and Reynolds numbers.

The greater part of the results have been obtained at a wind-speed of 620 cm.sec.™?, using
square-mesh grids of mesh 0-635, 1-27, 2-54 and 5-08 cm., and the results for the various
spectra are plotted in figures 4 to 7, in a non-dimensional plot, using characteristic wave-

number k, = (ep®)?
X
R
200 60
80 2625
100
150
40
60 5250
S
S 100 80
— |
@
30)
40} 10500
50
60
30 21000

Ficure 4. Spectrum functions of # fluctuations.
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Frcure 5. Spectrum functions of 9u/0¢ fluctuations.
— R, =2625; ——R,,=5250; ---R,,=10500.
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F1cure 6. Spectrum functions of 0%/0¢? fluctuations.
— R, =2625; ———R,,=5250; ---R,,=10500.
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and characteristic spectral intensity ¢tf.* For the purposes of this plot, ¢’ was assumed to be
equal to the total dissipation ¢. Using the mean decay law (Batchelor & Townsend 1948 a)

U2 x—x

e P
LB M
D x—xo) M 0§1)

where D and x,/M are nearly absolute constants. Experimentally, D = 135 and x,/M = 10.

4x10

3x10°

2x10*

1x10*H-

kk,

Ficure 7. Spectrum functions of 9%/0¢® fluctuations.
— /M =60, 80, 100; ———x/M =40; ---x/M = 30.

It is clear from the results that there is no part of the spectrum for which both the con-

tribution to the total energy and the contribution to (du,/d¢;)? are negligible, so theoretical
Justlﬁcatlon for the use of the total energy dissipation is lacking and the success of the
assumption is its main justification. This identity of ¢ and ¢’ is consistent with the notion that

k
the large eddies enter into the transfer term in the formf k"2E(k’) dk’. Tt should also be noted
0

that, if the spectrum is self-preserving during decay, then, for any one mesh Reynolds
number, thismethod of plotting will lead toasinglespectrumirrespective of local similarity (for
example, see figure 4). Considering the high-frequency end of thespectrum first, itis apparent
that for k£/k, greater than about 0-6, and at not too small values of x/A, the spectra are all
substantially identical in this form. Below £/, = 0-6, there are small butsignificant systematic

* Numerical tables of the observed spectrum functions are given in the appendix.
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differences between the spectra at different mesh Reynolds numbers, these differences
being most obvious in the spectra of du,/d¢,;, but sufficiently clear in the spectra of 9%, /d¢3.
It must be concluded that, at the Reynolds number range of these experiments, the con-
ditions appropriate to the setting-up of the equilibrium spectrum only occur for £ greater
than 0-6%,. (Since the three-dimensional spectrum function £(k) depends on the behaviour
of ¢(k) only in the immediate neighbourhood of %, these conclusions apply equally to £(k).
The differences are the more significant since the method of plotting ensures that, indepen-
dently of any similarity, the area under the spectrum of du,/9¢,, i.e. (du,/9¢,)2, is independent
of the mesh Reynolds number.

At low values of x/M, the intensities present in the high-frequency part of the spectrum
are considerably less than normal, and this effect cannot be dismissed as experimental error,
since observations at larger values of /M but similar values of the total energy dissipation
are not affected in this way. The obvious explanation is that initially the turbulence is
produced in the form of large eddies, and the small eddies represented by the high wave-
number components of the spectrum are formed by a complicated sequence of interactions
between eddies. If the time necessary to form eddies corresponding to wave-numbers near
0:5k, is of order 2044/ U, then until x/ M > 20, the initial conditions will still influence the form
of the large wave-number part of the spectrum. The negative slope of the A? against x/M
curve (figure 2) at very small x/M is consistent with this point of view.

The original spectrum measurements of Simmons & Salter (1938) and Dryden (1938)
seemed to show that, at sufficiently high Reynolds numbers, the spectrum shape was nearly
independent of mesh Reynolds number R,, = MU/, and of decay time, and characterized
by the turbulent intensity 42 and the longitudinal scale L. The present measurements show
that, at any one mesh Reynolds number, the self-preservation of spectrum shape is good for
all but the smallest values of the wave-number, and that the appropriate scale is (v3/¢)* or
A rather than L. When L is used the agreement is naturally better near & = 0, but worse over
most of the spectrum. The apparent similarity found by Simmons & Salter, and by Dryden
is due mostly to the lack of freedom in the possible monotonic functions satisfying the

conditions 9 _
¢(0) = ;Luzb

f:qﬁ(k) dk = i

and has no other significance. As will be seen later, study of the correlation function shows
that the spectrum at small values of £ is very far from self-preserving during decay.

SELF-PRESERVATION AS A FUNCTION OF 7/

The spectra in figures 4 to 7 shows to what extent the small eddies are self-preserving in
form during decay. Larger scales of motion, however, are best studied by means of the
correlation function, as measurements of correlation are more accurate than measurements
of spectra in this region and departures from self-preservation are more easily seen. Thus,
the failure of self-preservation for large eddies is very evident in figures 8 and 9, in which
the double and triple correlations are plotted against 7/A. The triple correlation appears
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rather more sensitive than the double to this variation, but the measurement of triple corre-
lations at large values of 7 is difficult, and it would be unwise to rely too much on the exact
form of the curves beyond the extrema.

S

Ficure 8. Double velocity correlation function during decay of turbulence at R,,=5300.

2
x/M: x, 20; @, 30; O, 60; +, 90; @, 120; a__,‘1_~2.’).@,
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Ficure 9. Triple correlations during decay of turbulence at R,; = 5300.
xM: x,20; @, 30; O, 60; +, 90; &, 120.
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If the double correlations of figure 8 are transformed to the three-dimensional spectrum
function, the differences in the spectra at different decay times, plotted against £A or k/k,,
extend to wave-numbers considerably beyond the maximum in the spectrum. The small
wave-number parts of these spectra, plotted in such a way that they coincide at large values
of k, are shown in figure 10. It thus appears that a significant proportion of the total energy
may be outside the self-preserving region of the spectrum even while the initial period decay

law is closely obeyed.
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Ficure 10. Three-dimensional spectra at R, = 5300. x/M:—, 120; ———, 90; --~-, 60; ———, 30.

STRUCTURE OF THE LARGE EDDIES DURING DECAY

The correlation equivalent of the invariance during decay of the coefficient of £* in the
three-dimensional spectrum function is the well-known Loitsianski (1939) invariant relation:

@ [ " = A,
0
where A is independent of time. In the initial period of decay,
uZoc (t—1t,)7!
and so f o'O"r"f(r)‘ droc (E—1t,).
0

If there is self-preservation of the correlation function at large values of 7, such that

(1 8) =Sf(rfro(2)), then 75(2) < (1—1,)*.
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Figure 11 shows the same correlation curves as figure 8, but this time they are plotted

.7 (x—x\ 7 . . - .
against A_/I( Wi 0) , where x, is the virtual origin of the turbulence determined from the

energy decay curve. The parabolas (1 —472/A%) have been drawn for each curve to show how
widely they must separate at small values of 7. At large values of 7, there appears to be no
systematic variation among the curves, and this is not accidental for with a comparatively
small change in either the value of x, or of the power —1 the agreement disappears. Itseems,
then, that there is a range of large eddies that are self-preserving in a quite different way

Ficure 11. Self-preservation of the correlation function at large values of 7. R,,=5300.
x/M: x,20; @, 30; O, 60; +, 90; A, 120. A, Ar*te~**; B, Brt e~

from the small eddies, i.e. they have a characteristic length that varies as ¢ rather than ¢
The three-dimensional spectrum assigns about 159, of the total energy to this range, so it is
not negligible. The limited duration of the initial period of turbulent energy decay is almost
certainly due to the existence of this group of large eddies of appreciable energy whose
dimensions increase comparatively slowly. Initial period decay comes to an end when the
smaller energy-containing eddies have increased so much insize that they are nolonger distinct
from these more slowly growing large eddies. The scale of the turbulence then increases more
slowly, and correspondingly the rate of energy decay decreases less rapidly than was the case
in the initial period.

4 (g \ ~t
The curve f{r) (TZI) (x Mx") has also been drawn on figure 11. If the initial period

decay law is strictly true, the area under this curve should be the same 7t all decay times, and
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the observed variation is small for the portion of the curve accessible to observation. At the
largest values of r for which any sort of accuracy is possible, the correlation is decreasing
(as r increases) slightly faster than an exponential but not so fast as a Gaussian error function,
and it is possible to estimate the value of A. This may be a dubious procedure, but, con-
sidering the present lack of information on the magnitude of A and the obvious interest of
this invariant, the attempt is worth while. In figure 12, values of A obtained by assuming
(i) that f(r) cc e~ and (ii) that f(r) oc e=?*, for r greater than measurable values, are plotted
against mesh Reynolds number in the non-dimensional form A/M?U?. The actual values
of A almost certainly lie between these two extremes. Figure 12 also includes values of
A/MPU?based on the data of Batchelor & Townsend (19485) on the decay in the final period
for R,, = 650, 950 and 1360. The values for R, = 950 and 1360 have been recalculated using
a slightly different, and probably more accurate, method than that used in the original
paper, i.e. tangents of slope 4vM/U have been drawn to the A2 against x/M curves to obtain
the final period virtual origin, rather than drawing tangents of arbitrary slope to the energy

curves.
25—
F ® o
10— ®
S 50
< | x
=
s 2:5— x x
~ +
+ +
1-0—
| | | | | |

!
05 10 25 50 10 25 30
10-3R,,
Ficure 12. Variation of the Loitsianski invariant A with R,,; ©, calculated from decay in the final
period; x, calculated assuming f(r)oce~% at large r; +, calculated assuming f(r)oce=" at large r.

If the correlation curve has an ultimate high Reynolds number shape, and if u? varies as
U? at constant x/M, A/M>U? will be independent of Reynolds number at sufficiently high
Reynolds number. At the Reynolds numbers used in this laboratory, A/M>U? appears to
decrease with increasing Reynolds number. This point will be considered below.

SIMILARITY OF LARGE EDDY STRUGTURE AT DIFFERENT REYNOLDS NUMBERS

It has long been known that the velocity correlation function, f(r), measured at a fixed
distance down-stream of a grid at various tunnel speeds is nearly independent of tunnel
speed except at very small values of 7, i.e. provided that A is small compared with lengths
characteristic of the energy-containing eddies, for example, with the integral scale L. At
values of R, for which A/L is not small, the correlation is everywhere greater than at the
higher Reynolds numbers, and this departure from similarity of the correlation function
may be attributed to the significant proportion of the energy-containing eddies which are
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directly influenced by viscosity when the Reynolds number is low. At sufficiently high
Reynolds numbers, the eddies directly influenced by viscosity contain negligible energy,
and the correlation function should be independent of Reynolds number and cusp at r = 0.
While it is not practicable to attain sufficiently high Reynolds numbers to confirm this
prediction, it is possible to recover the asymptotic correlation at large values of 7 from ob-
served correlations by the following method. Because the effect of viscosity is to absorb
energy directly from the smaller eddies and so to reduce the energy transfer to yet smaller
eddies, at low Reynolds numbers the proportion of the total energy in eddies of less than
a given size is less than at high Reynolds numbers. As the velocity product Rj(r, 0, 0) is deter-
mined mainly by eddies larger in size than 7, it is clear that the ratio of this velocity product
to the total intensity, that is, the correlation function f(r), is greater than the asymptotic
value at high Reynolds numbers in the ratio (1+A), where Ais a measure of the relative lack
of energy in the small eddies due to the direct action of viscosity. To a first approximation,
A = aA?/ M?, where ¢ is a function of x/ M only, and the test of these ideas is whether f(r) /(1 +A)
at sufficiently large values of r/M is independent of mesh Reynolds number.

L
0-81-
K
=
n X)‘(
e
— R
> ’ ‘)q
> 0.4f s,
"o
Mo,
P
I X"xc\xy\‘xo
L&”\}x}.{ P
0 0-5 1-0 1-5 2:0
/M

Ficure 13. Adjusted double correlations.
x/M=30. R,: @, 5250; O, 21000; x 42000; @, 115000.

The results of this process are shown in figure 13, where f(r)/(1+A) is plotted against
r/M for a series of mesh Reynolds numbers. A is obtained using

A = al?/M? = 10a(x/M) R3}.

There is only one adjustable constant, «, which has been set to be 6:1. An indication of the
improvement in fit is given by the magnitude of the correction factor applied to the correla-
tion curve for R, = 5250. If this correction were not applied, the correlations would be
consistently 309, greater than those at larger Reynolds numbers, and the points would lie
well away from the high Reynolds number results. There are two sets of results, the first
series being obtained for square-mesh bi-plane grids at R, = 5300, 21200 and 42400, all

50-2
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at x/M = 30, and the second series a single correlation curve at R;, = 115000. In the first
series, the A/d ratio was 5-33, in the second 7-4. The second correlation function is therefore
not strictly comparable with the first series of measurements, and differences are to be
expected at very large values of 7/M where the correlation depends more critically on grid
geometry. It also means that an effective mesh length must be chosen, and this has been
done to obtain best agreement near f{r) = 0-5. If the similarity of the large eddies is real,
then not only should the adjusted double correlations agree at large r/M, but similarly
adjusted triple correlations should also fall along a single curve (figure 14). Due to difficulty
in the absolute calibration of the circuit for the measurement of triple correlations, all the
measurements in any particular determination of the triple correlation function may be
in error by up to 459, but there is distinct, if not conclusive, evidence of similarity of the
triple correlation function at large r.

~0-04 o
o o
o /&X“XT’“X\/ o o
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o
/ X
&

| r !
0 05 1-0 1'5 2’-0
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Ficure 14. Adjusted triple correlations. x/AM =30. R,,: @, 5300; O, 21200; x, 42400; &, 115000.

These adjusted forms of the double and triple correlation functions probably form an
adequate approximation to the asymptotic forms of these functions at very large Reynolds
numbers. The observed systematic decrease with increasing Reynolds number of the
invariant A/M3U? is partially accounted for by the variation of f{r) (unadjusted) with
Reynolds number, but there is also a variation due to the fact that neither #2/U? nor

u?/U%(1+A) are completely independent of R,,. This difference is probably due to variation
of the drag coeflicient of the grid at these comparatively low Reynolds numbers.

COMPOSITE SPECTRUM OF TURBULENCE

Direct measurement of the spectrum is the most accurate method of determining the
spectral distribution of turbulent energy at large wave-numbers, but at very small wave-
numbers correlation measurements are more reliable. In an intermediate range, both are
sufficiently accurate, and it is possible to obtain a composite spectrum of considerable
accuracy over the whole range of wave-number by transforming the correlation function
and combining it with the direct measurements (figure 15). There are significant differences
between the spectrum function and the transformed correlation function at the smallest


http://rsta.royalsocietypublishing.org/

%

a
L
—%
AL B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AND SELF-PRESERVATION IN ISOTROPIC TURBULENCE 379

wave-numbers, due in part to the necessary approximation that

d 190

=T
Such large-scale motions may well change appreciably in the time taken for them to pass the
hot-wire. The exact interpretation of the spectrum function at these wave-numbers is also
uncertain, for it is very likely that inhomogeneity of the turbulence in the downstream
direction influences the structure of the largest eddies, and that they do not correspond
closely with large eddies in a decaying homogeneous field of turbulence.
X
3

X
._66

%
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]
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F1GUre 15. One-dimensional spectra: O, direct measurement; x, transformed double correlation.
M (cm.) x/M U (cm./sec.) R,
a 1:27 60 620 5250
b 5-08 30 620 21000
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LocAL SIMILARITY

Kolmogoroff’s hypothesis of local similarity is an analytical description of the generally
accepted physical picture of the degradation of turbulent energy by a cascade series of
instabilities, and its consequent plausibility and the promise it gives of permitting the
application of information gained from the study of isotropic turbulence to the more complex
problem of shear flow have given the theory a prominent place in recent study of turbulence.
The spectrum measurements reported above make it clear that the portion of the spectrum
which conforms to the requirements of the theory is limited to extremely high wave-numbers
under conditions easily obtainable in wind-tunnels. It is not difficult to see that this result
is consistent with the necessary condition for establishment of local similarity in the viscous

range:
0E __ ..
—'7?;<2Vk E.

Making use of the result that for sufficiently large &, E(£, t) is self-preserving during decay,

E(k, 1) = kY (K[R)

where k, = (e/v®)t = 15'RY/A.
oE
0t 5 1+4n
Then TokPE  2/154°R,’
where n = _kdE
E dk

and « = k/k,. The condition for absolute equilibrium is then that

5 1+4n
2715 2R, <

and at a = k/k, = 0-6, R, = /(u2) 1/v = 30, n = 6,
5 1+4n
2./15 a*R,
which is not particularly small. At « = 1, the ratio is 0-12, and the similarity condition is
satisfied. This is in fair agreement with the experimental result that a universal spectrum
form is only found for £>0-6£,, and this small portion of the spectrum function represents

all that is known of the equilibrium range.
It is now clear why non-dimensional parameters of the turbulence such as

5= )T wa piocn, [~ [l

vary with Reynolds number up to the limit attainable in the wind-tunnel (Batchelor &
Townsend 1949; Stewart 1951), for they are determined largely by the part of the spectrum
outside the range of absolute equilibrium. Only at Reynolds numbers so high that these
parameters are determined solely by the equilibrium spectrum will they become absolute
constants characteristic of motion in conditions of local similarity.

= 0-42,
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A number of workers (Kolmogoroft 1941 a; Heisenberg 1948 a; Batchelor 19477; Townsend
1948) have attempted to find evidence of the inertial subrange of the equilibrium spectrum
by fitting £ = Ak~* to part of the spectrum, or, what is equivalent, fitting f(r) = 1 —A4'r* to
correlation curves. The present work shows directly that no significantly extensive region
of the spectrum can be described in this way, and, indirectly, that the condition that inertial
forces shall dominate the spectrum is incompatible with the condition for absolute equili-
brium at these Reynolds numbers. At sufficiently high Reynolds numbers, these conditions
are no longer incompatible, and Proudman (1951), using the Heisenberg form for the
transfer term S(%, ¢), has shown that an appreciable inertial subrange appears if R, > 500.
The assumption of a particular form for S(%,#) should not affect the result greatly, and,
indeed, if the condition for an inertial subrange is written as

klk,<0-1,
combining this with the condition for absolute equilibrium
k2 5 1+4n
leads to R,>1730 (since n=$§),

which is of the same order of magnitude. It might be mentioned that R, = 500 corresponds
to a mesh Reynolds number of R, = 2800000, nearly ten times the highest reported value.
While the extremely small extent of the observed equilibrium spectrum prevents the full
application of the theory, a sufficient range has been observed to discriminate between the
various suggested forms of the transfer term S(%, £). The spectra show that there is no sharp

high-frequency cut-off, and that the value of n = -%((—l%gg—% increases continuously to a

value in excess of ten. Thus none of the suggested forms of the transfer term are valid in the
equilibrium range, and it is concluded that no power-law is likely to represent the asymptotic
form of the spectrum at large wave-numbers. It is more likely that the equilibrium spectrum
is approximately described by Eoc k=!°8% when £ is sufficiently large, i.e. n increases
logarithmically with £.

QUASI-EQUILIBRIUM

Although the range for which there is absolute equilibrium is very small and plays little
part in the decay of turbulence, there is considerable evidence that a very important part of
the turbulent energy is in a state of moving or quasi-equilibrium. The theory of the quasi-
equilibrium was first developed by Heisenberg (1948), using the same form for the inertial
transfer term as he used in the range of absolute equilibrium. Since the predictions of this
theory are not valid at very large wave-numbers, it may be that the detailed conclusions are
not valid elsewhere in the spectrum, but the general concept of quasi-equilibrium is still
of value.

The observation that turbulence from such different sources as a square-mesh grid and the
‘slats’ grid is similar in its small eddy properties suggests that there must be strong tendencies
toward a common form at large wave-numbers. Similarity breaks down for £<0-6£,, but
the spectrum function is self-preserving over a much larger region, containing over half the
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energy and nearly all the viscous dissipation (figures 4 and 5). Thus two parametersin addition
to v are sufficient to determine a very large part of the initial period spectrum. ¢, the dissipa-
tion, is enough to define the similarity spectrum, but the quasi-equilibrium self-preserving
part of the spectrum depends also on another parameter which varies with R,, but not with

x/M. A suitable parameter is R, = ./(u2) /v, which is virtually constant during the initial
period (Batchelor & Townsend 1948a).

The fact that the initial period decay law is the same as would be expected if the
whole spectrum were self-preserving leads one to conclude that the quasi-equilibrium
range that is self-preserving plays a dominant role in the initial period behaviour. It
appears that once this quasi-equilibrium state is set up the energy drawn from the small
wave-numbers is kept just sufficient to maintain it, in spite of the fact that as the decay time
increases the distribution of energy in the small wave-numbers changes so that relatively
more and more is found at larger wave-numbers (figure 10). On the other hand the
particular values of the two parameters that determine the quasi-equilibrium must be
determined originally by the distribution of energy in the large eddies. Thus the particular
kind of quasi-equilibrium that is set up is determined by the initial conditions in the small
wave-numbers, but once set up it appears to have an internal stability that makes it very
insensitive to changes in these larger scales of motion.

The initial period of decay cannot continue indefinitely, however, for with increasing
decay time the non-self-preserving large eddies encroach more and more on the quasi-
equilibrium range. One of two effects may bring the period to a close. Either the viscous
dissipation of the large eddies will become significant relative to the dissipation in the quasi-
equilibrium range, or the distribution of energy in the small wave-numbers will become so
unsuitable that the energy drawn from them by the self-preserving range can no longer be
maintained at the correct amount for a linear decay. Information regarding the end of the
initial period as a function of R,, is not very reliable, and unfortunately the working section
of the Cavendish wind-tunnel is too short to be suitable for this purpose. What facts are
available have been collected by Batchelor & Townsend (1948a), and indicate that the
decay time, in terms of ¥/ M, at which the linear decay law breaks down does not vary greatly
with R,,. This supports the view that the end of the period is caused by a crisis in the transfer
of energy from small to large wave-numbers rather than by a relative increase in the direct
viscous dissipation from the large eddies.

TABLE OF CONCLUSIONS

For convenience, the various theories of isotropic turbulence, together with notes on their
experimental backing, are tabulated (table 1).

We wish to thank Mr A. Fage for permission to carry out experimental work in the non-
turbulent wind-tunnel of the National Physical Laboratory, and to acknowledge the willing
co-operation and help given by Mr L. F. G. Simmons and his staff during our stay there.

One of us (R.W.S.) was in receipt of a scholarship from the Research Council of Ontario
while these experiments were being conducted. We are also indebted to the Aeronautical
Research Committee for a grant towards the cost of the turbulence-measuring equipment.
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APPENDIX. EXPERIMENTAL MEASUREMENTS OF SPECTRUM FUNCTION

I ¥

R, = 2625, x/M = 60 R, = 2625, x/ M = 80
3 g(k)  EPk)  KPK)  EP(R) k_ PKk)  KPk)  KGR)  KSR)
k, eyt R2eivt ket kBehpt k iyt kZetvt  kletyt  fSehyi
(x10%) (x10% (x10%) (x10%)
0-0077 27 — — — 0-0091 30 — — —
0-0153 31 — — — 0-0181 36 — — —
0-0230 33 — — — 0-0272 32 — — —_
4 0-0306 36 o — — 0-0362 31 — — —
5 0-0383 34 — — — 0-0453 32 — — —
J 0-0575 28 — —_ — 0-0679 235 — — —
0-077 21 0-084 0-75 — 0-091 184 0-118 1-26 —
0-115 13-2 0-115 1-95 — 0-136 10-9 0-149 1-46 —
0-192 53 0-126 5-44 2-27 0-226 3-8 0-149 7-49 3:66
0-268 —_ 0-115 83 5-95 0-317 — 0-114 10-2 8-:95
0-383 — 0-068 11-1 14-8 0-452 — 0-063 11-1 18-8
0-575 — — 85 27-6 0-680 — — 7-1 28-0
0-766 —_ — 51 29-3 0-91 — — 35 23-0
1-15 — — 1-0 154 1-36 — — — 7-8
1-53 — — — 3-2
R, = 2625, x/M =100 Ry, = 5250, x/M = 40
k Pk)  KP(k)  Kp(k)  K°P(R) k. Pk)  KPK)  K(k)  KP(R)
5 k, eyt kFeivk  kietvt  Setvi k, etpt k2etpt kietvt  fSetpt
(x10%)  (x10% (x10%) (x10%
0-0101 28 — — — 0-0070 65 — —- e
0-0202 30 — — — 0-0141 79 — — —
0-0303 30 — — — 0-0211 75 — — —
0-0404 29 — — — 0-0282 61 — — ——
0-:0505 33 — — — 0-0352 55 — - —
0-076 29 — — — 0-0528 37 —_ — —
0-101 21 0-121 1-.86 - — 0-0704 27 0-123 0-73 —
0-152 11 0-149 3-32 — 0-106 14 0-150 1-95 —
0-252 3-5 0-129 8-3 4-1 0-176 6-5 0-156 4-72 19
0-354 — 0-096 10-4 150 0-246 — 0-124 74 4-6
0-505 — 0-045 10-4 24-2 0-352 — 0-084 94 10-0
0-758 — — 6-3 34-0 0-528 — — 7-8 19-5
1-01 — — 2.7 24-2 0-704 — — 51 20-
1-52 — — — 7-8 1-06 — — 15 12-3
1-41 — — — 32
4
) R, = 5250, x/M = 60 Ry = 5250, x/M = 80
“ Eo B B Be®) BB k) ER) BE) KR
kg etvi k3etvi  kietvi  kfeiyi kg etvd ketvi  kletvt  [Selpt
3 108 10¢ 3 ‘
~ (x10%) (x10%) (x10%) (x10%
= 0-0091 50 — — — 0-0108 47 — — —
= 0-0183 68 — — — 0-0215 59 - — —
O 0-0274 61 — - — 0-0323 54 — — —
O 0-0365 53 — — — 0-0430 41 — — —
w 0-0456 46 —— — — 0-0538 35 — — —
0-0685 26 — —_ — 0-0807 23 — — —
0-0914 18 0-139 1-18 — 0-108 14 0-153 1-32 —
0-137 10 0-165 2-83 — 0-161 7 0-163 4-1 —
0-228 4 0-153 7-1 3-6 0-269 2-5 0-123 7-9 6-9
é 0-320 — 0-089 94 10-3 0-377 o 0-080 10-4 14-7
0-456 — 0-052 9-6 10-2 0-538 — 0-027 9-1 21-6
0-685 _— — 57 28-3 0-806 — — 4-4 23-9
0-914 — — 2-8 24-9 1-08 — —_ 2-2 16-1
1-37 — — — 6-2 1-61 — — —_ 31
1-83 — — — 3-1
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R, = 10500, x/M =30 R,; =10500, x/M =40
k k) EGR)  KGR) KOG k $k)  RFGk)  KPk)  EG(K)
k, eipt kZetpt kietpl kSetpt k, eipt kZetyl kietpt kSetpt
(x10%) (x10% (x10%) (x10%)
0-0069 148 — — — 0-0084 143 — — —
0-0137 150 — — — 0-0168 136 — — —
0-0206 104 — — — 0-0252 91 — — —
0-0275 84 — — — 0-0336 66 — — —
0-0344 63 — — — 0-042 56 — — —
. 0-0515 41 — — — 0-063 35 — — —
1 0-069 30 0-129 0-82 — 0-084 24 0-168 1-10 —
| 0-103 14 0-161 1-51 — 0-126 12 0-186 2-49 —
0-172 6 0-151 3-90 1-54 0-210 — 0-158 6-0 35
0-240 — 0-112 6-4 37 0-294 — 0-104 77 7-5
0-344 — 0-063 7-3 7-4 0-420 — 0-057 7-8 155
0-515 — — 57 13-9 0-630 — — 4-4 256
0-687 — —_ 3-5 14-5 0-840 — — 2-3 22-2
1-03 — — 1-0 8-2 1-26 — — — 10-1
1-37 — — — 19 1-68 — — — 41
Ry, =10500, x/ M= 60 Ry, =21000, x/ M=30
k $(k) K2g(k)  KPk)  EH(E) k $k)  FoR) KIKk)  Kk)
k, eyt k2etyt kit ketpt kg ety k2etpt kietvi kbeiyi
(x10%) (x10%) ; (x10%) (x10%)
0-0108 121 — — — 0-0081 199 — — —
0-0216 108 — — — 0-0163 144 — — —
0-0324 78 — — — 0-0244 92 — — —
0-0432 59 — — — 0-0325 70 — — —
0-0540 44 — — — 0-0406 59 — — —
0-0810 25 — — — 0-0610 35 — —_ —
0-108 15 0-186 4-0 — 0-0812 21 0-148 1-55 —
0-162 7 0-198 85 — 0-122 11 0-163 2-88 —
0-270 — 0-135 10-4 81 0-203 — 0-124 478 2-5
0-378 — 0-075 11-0 13-6 0-284 — 0-079 5-65 5:0
0-540 — 0-039 7-3 24-8 0-406 — 0-036 571 9-1
0-810 — — 53 28-8 0-610 — — 3-30 12-2
1-08 — — 2-5 16-9 0-813 — — 1-48 10-4
1-62 — — — 56 1-22 — — —_ 34
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